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PROBLEM OF HYDRODYNAMIC DRAG
V..I._Merkuloy

The Grey and d'Alembert—Stokes Paradoxes /52%

Thirty years-ago the_English physiologist Grey, observ-
ing that dolphins suim_rapidly, and. in investigating thelir
muscle—capacity, reached a peradoxical conclusion: that_as .
they move, the animals_need to develop an energy seven times
greater than 1is necessary to move their muscles. All this.
contradicts previously known facts .

Experiments to clarify this paradox of Grey's force one
to make the assumption that, in. swimming, the live dolphin
experiences far less drag than a solid model-of it, upon which
basis the English physiologlst cume to his conclusion.

Some investigator has observed that Grey's calculatlons.
were exaggerated: the dolphin experiences a drag four times
less than the solid model. Therefore the physiologist erred-
in evaluating the energy of the noving muscles. Perhaps there
was no paradox at all.

Instead of looking for answers to these gquestions, we
made simple calculations of the energy necessary for tuna,
which move at & velocity of 90 km/hr. We intentionally chose
this animal and not, say, the swordfish, which ean swim 130
km/hr, because the velo:ity the tuna attains is instrumentally
recordable.

% Numbers in the margin 1lndicate pagination in the foreign text.
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Let us suppose that the tuna exper.ences the same drag

as the solid model. Then for a 100% coefficient of ~ffective
motor activity, an energy

L AR L ael

B et i

e

_ p:'aopﬂ' N
N =0 '—""s—"" * i

is necessary.

With & cross-sectional diameter of d = 0.5 m and a move~
ment rate of v = 25 m/sec, N = 100 kcal.

For this estimate, we toock as the experimental value of g
the dimension.ess coefficient ¢ for bodies 2.5 m long the '
Ra2ynolds number 6-107. §
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In order to develop so great an energy, the tuna must take
-:;m : in as much oxygen as a hundred horses. Even if one 1s not a EI

- : physiologist, it 1s not hard to understand that for a fish :
ﬁ which breathes oxygen, which i1s soluble in water in very small
] concentrations, this is absolutely impossible. #

e

Therefore the evidence in nature of an effective mechanism
of decreasing hydrodynamic drag has not caused any doubt.
Englneers have always thought about decreasing the hydrodynamlc
drag of bodles which move underwater. Studying the fast-moving
inhabitants of rivers and oceans ylelds a basis for supposing

that in this way there 1s even an inexhaustible source of
energy.
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The paradox of the physiologist Grey is answered with the
i theorem formulated by thé mathematicians d'Alembert and Stokes;

which in due time, came to be kriown as the equation of motion
of a viscous fluid.

G - T

These investigators noted this fuct: when drag in a /53
f1uid devoid of viscosity equals zero, in low-viscosity flulds
it 1s quite large.
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Noting that the viscosity is very low, the conelusion
Inay be drawn that the removal of the d'Alembert-Stokes para-
dox simultaneously raises the ceconclusion of Grey.

It 1s just for this reason that we shall propose a new
set-up for the problem of the dynamics of a viscous fiuid.

The New Problem Set-~Up

Motion of.a viscous incompressible _fluid may be described

by equations_which we shall write in the dimensionless vector
form:

@) B = — - Vp -y A divi e 0. (1)

Here w(u,v,w) 1s the velocity vector, p is pressure,

p = a constant, the density of the fluid, and R = %} is the
Reynolds number.

If, in a fluid immovable at infinity, a body with a sur-
face S moves with a uniform velocity in the direction of the

x axis, the equation becomes, under the following limiting
conditions:
v=w=0, u=1]n s, (2)

limeg=1limy=Illmw =0 (3)

Having taken R = », we obtain the degenerate equations:
(@) &P = — =V,
- - (4)
divid =0,
which describes the flow of a viscous fluid. They have a low
order and, instead of three limiting conditions (2) at the

boundary s, only one is allowed for the normal component of
the velocity

Wy =f(s) na 8. (5)
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The d'Alembert-Stokes paradox consists of the coefflcient
of drag c¢(R), calculated from the solution to .problems (1)-(3),
with the increase in R not passing through the zero value of
this coefficient, which follows. from the solution of equations
(4) and (5).

In.such a way, the physical problem of reduclng hydrody-
namic_drag leads to this mathematical problem.

It is.necessary to point out all the possible boundary
values of the vector w at the boundary S, for which the solu-
tion to equations (1)-(3) proceeds by means of the coefficlent
of drag to the solution of problems (4) and (5).

With this aim, it is limited to a consideration of planar
flow which can be deseribed with the aid of the flow function

by the following system of equations:
D (A4 &) R
—Dwn R a%. (6)

For cquation (6), it 1s necessary to give the following
1imiting conditions:

2, (S) 1 S, (1)
. 8
-—37-‘,—=-vs(3)' (8)
’ (10)

lim%f‘;—no np A% 4% - 0o, '

Here Yn and v, are the normal and tangential velocity of the

boundary flows.

Turbulent Flow of an Ideal Fluid Approximating Flow of a
Viscous Fluid

It always seems to be observed that the boundaries cannot
be deformed, and then v, = v, = 0. We observe them to be not
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equal to zero, and we use them such that the solutlon of the
boundary problems (6)-(10) are not subject to the d Alembert-
Stokes paradox. Then for the coeffleclent of drag having con=-
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+E f: tinuously developed at the solution of the .following problem
o 3 for an ideal fluid:
~ D (. 1) -
= b S =% - (11)
g 2 S
g : = Unld) 12 S (12)
v im 20 3 g oo
i %; lim 3y L nput 2242 — o) (13)
3 ’=
f It is known that equation (11) 1s equilvalent to: ;
A1.|3=F(1’;)
(14) b
- 1
- i
i The solution to equation (14), which we designate ¥ , %
L satisfies, with an error on the order of O(E), equation (6) % :
) and the limiting conditions (7) and (8). It is not hard to ﬁ
. prove that Af the function F(¥) is chosen such that 1lim i

F(¥) = 0 for » », then at the same time the condition (10)
will be fulfilled. )

) Let us assume U (S) to be such that there exists a cor-
; responding function F(y), for which the equation

“‘“F

= U (8) is obtained.

Then the solution to problems (11)-(13), with an error
on the order of OS%l can be the solutlon of the resulting
problems (6)-(10) and our task is reduced to finding the
function F(y¢).

Let there be some resultant functlon Fo ag to the solu-
tlon of ¢4 of the equatlon

avy = Fy),
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which satisfies the limiting conditions (7), (9), and (10),
or does not satisfy the condition (8), such that

%"'}f = U, (S) =nU;(S),

where n 1s a minor parameter.

Let us represent the function F in the form of a suw
F () = Fy (¥} + nFy ().

Then the solution to the equation

Ap =5 (¢ + 1A ()
can also be represented in the form of a sum /55
Y = 4y 4 1.

For this variation in the function ¢ with an accuracy to
the second order of smallness relative to n, the linear equa-

tion Aq—qF; () = Fi(f)

is also satisfiled,

It 1s possible to represent the arbitrary variation in
the form of a series for some complete set of functions

Fy(90) = 51 0P () -

n=

Let us introduce into the jnvestigation, the set of func-
tions °n’ which are solutlions to the following nonhomogeneous

equations
Ay — ApaFo () = Pa (%)

with the homogeneous limiting conditions

¢ 2 2
n _ . 3¢ = 0 for Xx +y =+
T 0 in S; 1lim 3y

Then the variation in the function ¥ has the form of a sum

N
Co= N @nPane
a=l
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whera the coefflclents an are the same as in the function

Now it is possible to calculate the normal derivative
N
é ] aq',.
w2
nss
and to set the requirement that it approximate the functlion
Ul(S), for instance, in the matrix L,

N i
I 21 an'aa%"'_ul(s)“{e-

The requirement that the expresslon mentioned attain its
least value leads to a system of linear equations 1ln the co-
efficients a,

N

EanAnm=Bm (m=2, ..., N),

naad

where Anm and Bm are expressed as the squares

Ap, Ofm _ [ %cn
huam [ o380, B [ Sm U

A priori investigations of the glven problem in the
general form are quite numerous. But the a posteriori evalua-
tions in the process of calculation yield the posslbillity of
extimating the corresponding subsequent approximatlions and
those which the function Ul(s) can attain by the approxima-
tions selected.

A
It is usually more interesting if the series Ean%

nes|
does not approach the function UI(S), althouzh possibly 1t is
only slightly different. In the case gilven, the solution
approximates the motion of a viscous fluid very well 1n the

middle of the flow, but at the boundary zone with a wildth on /55

the order of 0(;/-%) , & boundary layer occurs, owing to which
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all the limiting conditions are satisfied. We shall consider
this in more detail for complete periodic flow.

We studled flow which occurs during motion of a viscous
fluid along a streaming wave. Insofar as 1t achieves, in
the absolutc system of coordinates, nonstationary limiting
conditions, we explored this flow in a carrier system of
coordinates, which moves along with the crest of the wave with
a uniform velocity. 1In this system, & streaming wave is cre-
ated on an undeformed, undulating surface.

Weve flow of a viscous fluild with periodlc boundary con-
ditinns will also be periodic. Therefore it is possible to
look for a single long wave at the boundaries.

The velocities of the outer stream and the boundary cur-
rents have opposite directions. Wave flow of an i1deal fluid,
shown in the figure, ensures the necessary velocity agreement.
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This flow, called secondary, is described by the solu-
tion to the equation

A!‘O = FO(") 3
where
Fo (Pgi = ¥ (1 — thByy).

is assumed.

It is not hard to understand that such a solution, being
approximate, is not unique. However, it can serve as a first
approximaetion for applylng a preliminary algorithm, which
yields the possibility of finding the function, the normal
derivative of which best approximates the value of the tan-
gential velocity Vg of the boundary currents.

In this general case, if ¥ 4‘12&» the solution obtained
can only be used in the middle of the flow. But in a narrow
zone with a width on the order of 0 ;7% ,. & boundary layer 57
is created, owing to which the necessary solution on the
boundary 1s achleved.

We found the solution at the boundaries of & vlscous
boundary zone. For a system of equations, we take this limit-
ing arc x and the normal to it y.

The Periodic Boundary Layer

Flow in a boundary layer is described by the Frandtl
equations:

au 19 1 S,
u g to g —p"ag'*"rrfr (15)
'3?""55”0 (16)
% = 0. an
o

Here u and v are the velocity components in the curvi-
linear system of coordinates chosen. '

P




The functlons
the velocity for the component u.
us to display them as a Fouriler serles:

ul{x,0)=v,=1+4+23 ‘§‘ a, cos nx,
ntb

T and —11 will be limiting valucs of

(18)

u(x, N)=%=l+}ia;cosnx. (19)
na=:0

Here we observe that the choice of sca

length is reduced to’ 2mn.

3p = 0, the pressure

Owing to
%gr stream and satisfies the equations

sure in the ou

We introduce a new dependent varlable us=u- u®.

stituting this funct

4
H

equation _ " | e
- @ - gu® - éu |, dut 1 Fu
u"-ai--i-u-—x--i-u—éﬁ--;-_u 3 +‘U-é—= o (20)

smallness; then

We reject values of & second order of
(21)

Ju 1 &a

This simple equation requires solutien with the following

iimiting conditions.
ulx, 0)= Z (a, — @a,) cos nx,

n=0

(22)

U(x, o) =0. (23)
Tae solution of equation (21) ¢can b
gseries in which the coeff
following system of equations: o _ ‘;, u,,w)cosm+vn(_1)smnx.

uau
o,

W o ROy

We multiply the second equ
first. For the complex unknown

"n = U, + 1vn

It will be convenient for

le for the wave-

p coincides with the pres-

Sub-~

jon in (15), we obtained the homogeneous

i s -

e sought in the form o a
jelents u, and w, must satisfy the

1 o 1
2 ;," 4-nv, =0; Ly, == 0.

atlon by i and add 1t to the

aalide
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we obtaln

& ,
d:,"—'- — iRuw, = 0,

(24)

The general solution 1s written thus:
fin
wnﬁang V [cosy]/ ——--—IsnyV \"] ;
A+ d,e _ T[eosy 'l/-'ﬁ"--i—isiny"],/—[‘;‘—].

From the 1limiting conditions at infinity, it follows
that dn = 0. Then for the coefflelents u,, v,, We find the

expression:

i) - S
“ﬂ“‘ne_ﬂ/ 7 cosy |/ -%E-: 5 = —Cnl -V sing ]/%“-

Thus, the unknown function i will be given in the form

of a series

u(x, J)=2,c,,e l']/‘}ﬁcos( nx—y R")

=0
From the limiting condition (22), we obtaln:

- at
cn.an an

Returning to the previous unknown, we find

- .l'm
u(x, 4 J)=l+_‘[a co.wuu.-}-(a,,—a),g"1 =y co-m— l\n ]
0

Now 1t 18 possible to calculate the dimensionless behavior
of forces of tangential friction, which is equal to the coeffi-

clent of frictlion squared

i . X R .13 .
iy ‘ Ty = —-17-} - : (a, = 0} V na,, \ COs 11N COS (m.\. - -_‘-) (dx==

(25)

1 A .
2V R ;—:, (an —a,) a,
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The specifics of the becundary layer Studlied consist of.
causing a small sequence of velocitles, directed to one side,

% This justifies taking its simplified equation., Moreover,
: perlodic boundary conditions cause periodicity in the bound-
5 ary layer.

Both these circumstances. lead. to an effective Reynolds
flow number waich was examined, appears low, and does not
? depend on the dimensions of the entire body.

The Streaming Wave: The Mechanism of Reducing Hydrodynamic Drag /59

The solution which we constructed, owirg to its complete
pPeriodicity, deseribes flow with zero drag in the usual sense.
Having applied motion with an active boundary, the drag co-
efficlent is then calculated foom the force necessary to sus-

tain flow with zero drag. This force_combines dissipation,
which is equal to

""1?‘ 55 (A\Po) 2-

and the energy necessary for the formation of 4 vortex in one
hour. The first addition is of the order of 0(), ar1 the
second 0(f) where A 1is the wavelength and L the length of its

- body, which is flowing along.. This same force must equal, in
the optimal case, the work done over one hour by the forces
of tangential frietion, calculated from formula (25),

What advantages has the streaming wave compared with a
smooth solid surface? They are conditioned first of all by
the periodicity of the flow. While at the 80l1id boundary,
the local Reynolds number increases, avoiding the first criti-
cal point (such g flow necessarily becomes turbulent, it re-

mains constant in periodic flow and may be chosen sufijelently
small that the flow will be laminar.

12




v s T

e g e T e T LT

e i b L

e

o . ol
'

The advantage of the flow which was studied 1s especlally
great in.flowing bodies of small extent. Thrn, a7 in bodies
with a solid boundary there are formed abrypi flo.*; with &
high drag coefficient, the actlve boundary preserves continuous
flows with a zero drag to pressure. If one takes into considera-
tion that the presently provided decrease of drag to pressure-
1s reduced to the size of the relative length, l.e..to the size
of the drag friction, it is_possible to understand the advan-
tage which the flow desé¢ribed ylelds.

All the cases cited above are prohibited in the.solution
of the equations of viscous-fluid motlon. Using these in con-
formity with_physical flow, 1t 1s poasible, if the limiting
conditions are taken for those physically achieved.

There remain some requirements for this.

Usually, it 1s possible to imagine a mechanism, observed
in a model, which.compels varying the houndary corresponding
to the given law. However, such a construction is so compli-
cated that it is practically prohibitive. Therefere, let us
look at anothei procedure

The streaming wave may he a regime of auto-oscillation
on an élastic surface. Excitation and oscillation of the
regime are realized either by a specific mechanism operating
or by means of the principal stream.

In this way, creation of a streaming wave is suffieient
to regulate elastic properties in relation to the velocity of

the fluid flow.

It is entirely possible that such a mechanism of streaming-
wave formation and hydrodynamic-drag reduction occurs, we zay,
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in dolphins and tuna. Their thick layer of .fat and muscle

may be that elastlc covering in which the wave is generated...
Special muscles in the dolphin regulate skin tension and
therefore. its elastic properties.

Analysis of the equations of motion for a viscous fluid
has shouwn_that in thls case, if"a specially selected stream-
ing-wave 1is generated on.the surface of a body, an original
secondary flow occurs along it with zero drag. Here, such
an effect is attained by loss of very small energies.

The results obtained may be use¢di-to explain the "secrets"
of the rapid and economical swimming of aquatic.animals and
to create technical means for reducing hydrodynamic drag.
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